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Flutter Analysis of Composite Box Beams
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The dynamic aeroelastic instability of flutter is an important factor in the design of modern
high-speed, flexible aircraft. The current trend is toward the creative use of composites to delay
flutter. To obtain an optimum design, we need a accurate as well as efficient model. As a first
step towards this goal, flutter analysis is carried out for an unswept composite box beam using
a linear structural model and Theodorsen’s unsteady aerodynamic theory. Structurally, the wing
was modeled as a thin-walled box-beam of rectangular cross section. Theodorsen’s theory was used
to get 2-D unsteady aerodynamic forces, which were integrated over the span. A free-vibration
analysis is carried out using the theory of Ref. [4]. These fundamental modes are used to get the
flutter solution using the V-g method. Future work is intended to build on this foundation.

Structural Preliminaries

A thin-walled box beam is considered for the analysis. A coordinate system £ = {Z; Z; £a} is
defined along the undeformed wing with £, along the elastic axis.
The displacements, rotations, strains and curvatures are denoted by u, 6, 7 and & respectively

u) 61 T K1
'u={U2}0={02}7={2712}K={K2} (1)
u3 03 2m3 K3
Transverse shear deformations are negligible, so that 72,13 = 0. Thus

{711} {u’l}
Y= 0 p=40 ()
0 0
6 A
0={—u§,}andn={—ug} (3)
0, :

Using the theory developed by Badir et.al. (1992) we get a constitutive equation of the form

Rotations are small, so that

F Cu Ci2 Ciz Cu u)

M| _|Ca Cn Cn Cxn 6 (4)
M, Ciz Ci Cxp Cy —US'

M, Cuu Cu Cyu Cy uy

where F is the force along the wing and M;, My, M, are the torsional and two bending moments.
The [Claxa is the cross sectional stiffness matrix and is obtained using the theory.
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Energy Formulation and Raleigh Ritz Method

Langrange equations of motion can be written in terms of the kinetic energy (T) and the strain

energy (U) as
0 (6(T-U) oT-U) _
E( 04; )— Og; =@ ©)
Kinetic energy is given by
Ly —md]
r=3 {5} [me TT{E}em ©)

where m is the mass per unit lenth, £ is a matrix of center of mass offset from the elastic axis and
1 is the matrix of polar moment of inertia. For our problem Eq. (6) becomes

wu Y'[m o0 0. 0 (1
1) 6 0 i -m§ -mé| ] 6
T_Z./o Caa |0 -m& om0 |- (7)
Uy 0 —m& 0 m Up
Strain energy is given by
1 "
S TAMECINC ®

so that T
U Cn Ci2 Ciz Cu u)

1 rt) & Ciz2 Cyp Coa Cyu &
U= 3 Sur( |con Co Cu Cu|]-us (% ®
2 Ciu Cu Ciu Cu ug
Now generalized coordinates are introduced to make it a finite dimensional system. We represent
the deflections u and 8 with finite number of modeshapes yielding

U

U
b =1l (10)
Uz
where (b b 0 0 0
0 0 0 {¢u3}lxq

Here n,0,p,q are the number of extentional, torsional, vertical bending, and inplane bending modes,
respectively. Thus, we also have
Uy
4
—u!
o

= [¢*] {q} (12)



where

*] __ 0 ¢’l Xo 0 0
Sl I T A 19
0 0 0 {¢Z:}lxq

Substituting Eq. (10) and Eq. (12) in the kinetic and strain energy expressions given by Eq. (7)
and Eq. (9), the Lagrange’s equations can be expressed as

[M){¢} + [K]{q} = {Q} (14)

where
m 0 0 0

l : —mbs  —méf.
M= [0 g g w0 | (1)
0 —m£3 0 - m
Ciu Ci2 Gz Cig

{ Cia Copn Ci C:
_ or | Clz C2 Caz Coq | (xa
[K] = ./o 7] Ciz Caz Cisz Cyy [#%]dz (16)

Cuu Cyu Ciy Cy

Calculation of {Q} will be discussed later.

For the present analysis, n extensional, o torsional, p vertical bending and ¢ inplane bending un-
coupled modes are taken as {¢y, }’s, {de,}’s, {dus}'s and {@,, }'s respectively. Analytic expressions
for the modes were taken from Ref. [2]. Analytic expressions for the above integrals were derived
for the case of uniform cross section beams.

Free vibration analysis
For free vibration analysis, {Q} = 0, thus Eq. (14) becomes
[M]{¢} + [K{q} =0 (17)

Now assuming simple harmonic motion, i.e. {g} = {7}e**, we get an eigenvalue problem, whose
eigenvalues give the frequencies and eigenvectors the modeshapes of vibration.

[K]{g} = w*[M]){3} (18)

Given below is a comparison of free-vibration frequencies of a Bending-Twist Coupled Beam with
experimental values. A graphite epoxy cantilever plate beam is considered. The results validate
the free-vibration analysis code.

Mode | Experimental | Numerical
1B 3.6 3.6
2B 24.2 22.6
3B 66.5 63.3
4B 124 124




Coordinate Transformations

Aeroelastic analyses using simple structural models have traditionally relied upon aerodynamic
variables such as angle of attack () and plunging motion (h) to describe the aerodynamic forces on
the airfoil. Because the present analysis incorporates a more sophisticated structural model, it was
found to be more convenient to express the aerodynamic parameters in terms of the wing kinematic
variables.

The wing section has an angle of attack a in a uniform freestream of velocity U. The reference
frame & is oriented such that U = —Ud; (see Figure 1). The reference frame b is oriented with
respect to the undeformed wing section and is centered at the section reference line. Thus, it is the
same as the structural coordinate system Z, i.e. b; = #;. The reference frame B is a small angle
transformation with respect to b caused by deformation of the section such that

B;l 1 U’Q ‘U,3 91
Byp=|-u; 1 bif{b (19)
B;; —uf, —01 1 b3

The section of the undeformed beam is rotated at a steady-state angle of attack a, from the
freestreamn such that the transformation from a to b is

él 1 0 0 al
by p =10 ocosa, sina,|qda (20)
bs 0 —sina, cosap as

In this analysis, we assume that the steady-state angle of attack is small (i.e. the same order of
magnitude as the angles in Eq. 19). This allows us to make the approximations

cosa, =1 and sin a, = Q. (21)

.Combining Eq. (19), Eq. (20) and Eq. (21), and discarding the higher order terms, the transfor-
mation between the freestream reference frame and the deformed beam sectional reference frame

is N
Bi] 1 'U,'2 uf, 6.1
Biz = —'U.'2 1 Qo + 01 &2 (22)
B3 —ug —(ao + 01) 1 as
This transformation shows the section angle of attack as a function of time to be

at) = a, + 6, (t) (23)

The deflections u; along the undeformed reference axes b; are also expressed in terms of the
freestream reference frame é. Carrying through the small angles assumption of Eq. (21) and as-
suming the displacements also to be small, it can be verified that

wid; = uibi & wids (24)

This is a gross approximation, but it is allowed in this analysis because the small angle and
small displacement assumptions are within the limitations of Theodorsen’s theory. From Eq. (24),

the section plunging motion is
h= -—Us3. (25)



Development of Generalized Aerodynamic Forces

Lagrange’s equations were developed from kinetic and strain energy formulations for a uniform,
cantilevered, thin-walled, closed-section beam and are given by

Mi+Kqg=Q (26)

where M is the n x n generalized mass matrix, K is the n x n generalized stiffness matrix, Q is the
n X 1 generalized force vector, and g are the generalized coordinates. There are two components
of the generalized forces that must be considered in the flutter analysis: the aerodynamic loadings
and the structural damping. This analysis uses 2-dimensional incompressible strip theory to obtain
the aerodynamic loadings. The effect of structural damping is introduced artificially using the V-g
method, as will be discussed in a later section. '

The vector of generalized aerodynamic forces is developed in from the principle of virtual work.
The virtual work done on a two-dimensional airfoil section is expressed as:

SW=(L+D)-6F+M-6¥ (27)

where E, D and M are the section lift, drag and moment, respectively; 67 is the virtual displacement
vector, and 8V is the virtual rotation vector:

B
6F = busd; + 60 x (baB,) 60 = {66, —6uy 6bul} { B, } (28)
B;

The aerodynamic loadings are calculated with respect to the freestream reference frame é and
about the midchord, such that L = Léj, D = —Da; and M = Ma,. The reference line offset from
the midchord is baB,. The virtual work can be rewritten using Eq. (28) in terms of the virtual
displacements and the virtual rotation about the reference line:

W = PT 6u+ RT 6u' (29)
where P and R are 4 x 1 column matrices and
6’U1 6u’l
_ 501 r_ 6011
bu= —bus and ou' = —6u
6U2 611&

The virtual work can be expressed in terms of generalized coordinates, using the expansion
u==®q (30)

where ® is the modal matrix and ¢ is the generalized coordinate vector. The virtual work in terms

of generalized coordinates is

s du o'
oW =P 6q6q+R 6q6q

or, from Eq. (30), L
W = (PT® + RTd')éq
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The coefficient of 8q is the transpose of the generalized aerodynamic forces on the section. Inte-
grating over the wing span, we obtain the generalized aerodyanmic forces as

L
Q= /0 (®TP + &'TR) dz (31)
The elements of P and R are, in terms of the lift, drag and moment,
Pl =0 Rl = 0
P, =M4bal+ baD(a., + 01) Ry, =0 (32)
P3 =/ R3 = —M'U:,z
P, =-D Ry =baDy,— baluy — Mu}

2-Dimensional Strip Theory (Theodorsen)

Expressions for the unsteady aerodynamic lift and moment on an airfoil were initially developed by
Theodorsen. Assuming simple harmonic motion the total lift and moment can be expressed as

L = Lo+ Le*t

here Ly and M, are the steady components of the lift and moment associated with the steady-
state angle of attack ao; L and M are the complex magnitudes of the unsteady lift and moment,
respectively; and w is the natural frequency. The steady components of the aerodynamic loadings
are given from Ref. [1] in terms of reduced frequency k = wb/U as

b3w?
b4w2
Mo = B, (34)

In these equations, p is the air density and b is the semichord. Because this flutter analysis is but
a first attempt using a primitive acrodynamic theory, the steady lift and moment coefficients are
assumed to be those of a thin symmetric airfoil, i.e.

Cto =210, 8Nd  Cmo =T (35)

The unsteady components of the lift and moment are derived from the complex magnitudes of
the lift and moment coefficients in Ref. [1] for the case of simple harmonic pitching and plunging
motions. These unsteady loadings are:

L = —wpbswz{Lh% + [La— (% +a)Lnla}
M = mpbw?{[My— -;-L,,]% + M, - %La - (% +a)(My — %L,,)]a} (36)

The coefficients Lo, Ly, M, and M, are functions of reduced frequency k and the Theodorsen
function C(k), and are given from Ref. [1] as

La —i(1+2C(k)) - ZC(k) M,

Ln i O(k) M,

Al

(37)

[

Laad {1

[}
N=00i ¢
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The total lift and moment can be written in terms of the kinematic variables by recognizing
that, from Eq. (23) and Eq. (25) _ _
h = —ﬁa a= 01
Also, in accord with the assumption of simple harmonic motion,

Uz = ﬁse“‘" 01 = 016“‘"

Expressions for the total lift and moment are thus

2m pb*w? 3 2 U3 1
L = ——a—mphw {—L;.—b—+[La—(§+a)Lh]01}
_ mpbl? 4 2 1, ,—us
M = —Si—a+mpbty {im, - sl (38)

1
2

The drag on the airfoil section is developed by introducing the small perturbations in velocity
and angle of attack into the equation

Mo = 2L — (& + )M~ L0101}

D = pbU%cp(a) (39)

From the geometery and noting the approximations made in Eq. (24) and Eq. (23), the velocity is
U + 1, and the angle of attack is @ = a, + 6;. The velocity U is expressed in terms of reduced
frequency k. In addition, it is recognized that, for simple harmonic motion,

Uy = iwﬁge“‘" = W2

Substituting these perturbations into Eq. (39) and using a Taylor series expansion, the linear
approximation of the unsteady section drag is:
_ pb*? pbiw? dep 2ipb*w?
= Teo(e) + T g 01+ T

The generalized unsteady aerdynamic forces are obtained by substituting Eq. (38) and Eq. (40)
into the relations for P and R in Eq. (32), and subsequently integrating Eq. (31). Neglecting
higher-order terms, the non-zero elements of P and R become

D

cp(ao)us2 (40)

P, = mpbiu? [~ (% + a) Lo+ (% +a+ a2) L

+M, — (1 + a) My+ —= (CD(ao) + %CEDL. ao)}(h

2 wk?
+1rpbsw2 [(-;— + a) Ly - Mh] uz + 2ipab3w2’:p(ao)aou2
+M [1 +2a + acD(a°)] Q,
k? v
Py = mpbdu? [La - (% + a) Lh] 6, — mpb*w® Lyus — 2"‘?:)23‘02 Qo (41)
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P = __pb”w2 ch| g — 2ipb2w2cD(ao)u _ pbiwicp(as)
4 2 dolao ! k 2 k2
4, 2
Ry = Ty,
4, 2 o b4 2 o
R, = _—-—"”bk‘;’a (1 + 2a)u, + 2222027/ “’kﬁ"(")u;

The natural frequency term w? can be factored out of each term in the above expressions, and these
forces can be rewritten in the matrix form

P=uw?Au+w?’B R=u'DV (42)
The 4 x 4 matrices A and D and the 4 x 1 column vector B are shown in the appendix. Using

the modal expansion in equation (30) and substituting the above expressions into Eq. (31), the
generalized acrodynamic forces become:

L L
Q=u? { /0 (@TA® + T DY) dz} q+u? /0 3TBdx (43)

Equations of Motion

Analysis of the flutter problem is greatly simplified when the mass matrix M in Eq. (26) is a
diagonal matrix. The mass matrix in our analysis, however, contains off-diagonal terms that account
for inertial couplings in the beam that arise when the center of mass does not coincide with the
reference line. To solve this problem, the equations of motion in Eq. (26) can be recast in terms of
a diagonalized mass matrix. To do this we consider the problem of the wing in free vibration

Mi+Kqg=0 (44)

The eigenvectors g; and eigenvalues w? of this problem are obtained and used to simplify the
equations of motion in the flutter problem. The mass and stiffness matricies can be pre- and
post-multiplied by the n x n eigenvector matrix T, where

T=[@ G ... @n)
such that
YTMY§+YTKTg=0
The matrix M? = TTMTY is the diagonalized mass matrix, and the matrix K2 = TTK'T is the
diagonalized stiffness matrix. From the solution of equation (44), it can be seen that

K? = uiaMP

Here we have introduced a reference frequency wr that will ultimately simplify the flutter equa-
tion. This reference frequency is arbitrary, and is traditionally taken to be the natural frequency
of the wing in the first torsion mode. The n x n matrix Q contains the free vibration natural
frequencies in the following form:

(232 o ... 0
2
a_| 0 @ .. 0
: : - w: \
0 0 ... (&)
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This diagonalization technique is applied to the equations of motion for the flutter problem.
Using the eigenvectors and eigenvalues from the free vibration problem of Eq. (44), Lagrange’s
equations (26) become

L
MP§ + AQMPq — w?Sg = 1T /0 3T B dx (45)

where E is the generalized aerodynamic forces from Eq. (43) premultiplied by the transpose of the
eigenvector matrix such that

L
==17 /0 (®TA® + ¥'TDP) dz

Structural Damping

As pointed out in Bisplinghoff, Ashley and Halfman [1], a futter analysis cannot provide accurate
results without accounting for the effects of structural damping in some fashion. In flutter specifi-
cally, structural damping is the only mechanism through which energy is removed from the wing. A
precise description of the structural damping in the wing is difficult to obtain; however, since it is
small compared to the aerodynamic loadings, it is possible to approximate the structural damping
by an artificial damping force. To characterize this artificial damping force, consider a single degree
of freedom system undergoing the simple harmonic motion

T = oe™t

A viscous damping force opposing this motion could be
dz
Fp= _fEt- = — fiwzge

The viscous damping force in this example lags the position vector by 90° and has an amplitude
that depends on the frequency. The structural damping in the flutter problem is known to be
frequency independent, so the viscous damping model is not a valid approximation in toto. It does
show, however, the presence of a phase shift between the motion and the corresponding damping
force.

In the motion of a beam element in free vibration, an artificial structural damping can be
associated with each elastic restoring force and torque by multiplying the restoring force by a small,
artificial damping coefficient g; associated with each motion. In terms of generalized coordinates,
this artificial damping force can be defined from Eq. (44) as

D

= = —g—-wid
or, in matrix form,
MP
= = —iG—uw}§ (46)
w
where
a1 0 0
0 0
¢=|. 7
0 0 gn



The coefficients g; have absolutely no physical meaning. The flutter condition occurs when one
of these coefficients goes to zero in the flutter equation. Because the structural damping effects are
small in comparison with the aerodynamic forces, we can for the purpose of this analysis assume
that

GG >...Mgng

The individual values of g will be recovered from the solution of the flutter determinant, as will

be seen.

Flutter Equation

The generalized artificial damping force vector can now be included in Eq. (45) to obtain the
complete equations of motion for a wing in flutter.

. L
MPg+ %w?qQMDd +whMPq - w’Eg= WQTT_/O ¢"Bdz (47)

This is an inhomogeneous ordinary differential equation in g. The inhomogenous term can
be dropped if we consider the generalized displacement to be composed of steady-state and time-
dependent components, such that, assuming again simple harmonic motion,

g=go+qe*

Dividing the remaining terms by the natural frequency w? and rearranging, the homogeneous
flutter equation becomes

[QMD(E%-)(1+1’)—MD—'=]'=O 48
2 g =g (48)

The the flutter conditions are found by setting the flutter determinant to zero for a range of
reduced frequencies kg and plotting the natural frequency w and artificial damping coeffient g with
respect to the reduced velocity, 1/kg. Flutter occurs at the reduced velocity where g goes to zero.
The flutter determinant is

det [QMD (:’}—-‘2;‘) (1+ig) - MP - 5] (49)

The components of the flutter determinant can be arranged in a convenient form that allows the
determinant to be solved in terms of a single complex polynomial. This is done by introducing the
parameter w, which is a given natural frequency of vibration for a specific mode (usually taken to
be the first torsion mode). The components of this determinant are:

MP [(g_;)?Z _ (1 + 'X:?b)] fori=j (50)
-5 fori#j

where WRA2
Z=(—)(1+1
( - ) (1 +ig)
The natural frequency w and the artificial damping g are recovered from Z for each given reduced
frequency.
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Preliminary Results and Future Research

A flutter analysis was carried out for a Uniform Cantilever Beam. The result is compared with that
obtained by Goland Ref. [3]. The flutter velocity obtained by the code written was 305 mph while
Ref. [3] obtained 385mph. The discrepancy in the result may be attributed to some differences in the
aerodynamic model used and some slight numerical errors in Ref. [3]. The formulation developed
is quite general and can form basis for further work in this field. The structural model could be
extended to include nonlinearities. The aerodynamic model could be updated to a more accurate
doublet lattice method. To do a time-domain analysis for accurate results away from the flutter
point, a finite-state acrodynamics could be utilized.

Appendix
The elements of the matrices A, B and D contained in equation (42) are presented below.
Matrix A:
Ay = Ap=Ap=Au=0
Ay = An=An=0
1
Aypy = wpb‘[— (a+—;-)La+ (Z+a+az)L;.+ M,
1 a dcp
....(-2- +a)M, + W(CD(C!O) + —d?Loa")]
Ay = —mpb®[(1 +2a)Ln — M)
2ipabicp(as)o
Ay =
k
A32 = 1rpb3 [La - (% + G)Lh]
Az = wpb®Ly
_ oo
Ao = - k? da |ao
A = 2ipb*cp(ao)
u = ——p
Matrix B:
Bl = 0
4
B, = mpb 142a+ acp(a) Qo
k? .
2m pb®
B; = ——%ao
pbcp(as)
B = -E5—
Matrix D:

Dy = Dyp=Dy3=Dy=0
Dyy = Dp=Dyp=Dy=0
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D3y = D3y=Ds3=D3 =0

Dy = D=0

Dy = _wplI::ao

De = —""Z:“°(1+2a)
Dy = _Pab4;z;(ao)

References

[1] R. L. Bisplinghoff, H. Ashley, and R. L. Halfman, Aercelasticity, 1957.

[2] T. Chang and R. R. Craig, “On Normal Modes of Uniform Beams,” EMRL 1068, University
of Texas at Austin, Jan. 1969.

[3] M. Goland, “ The Flutter of a Uniform Cantilever Wing,” J. of Applied Mechanics, Dec. 1945,
pp.197 — 208.

[4] E. A. Armanios and A. M. Badir, “ Free-Vibration Analysis of Anisotropic Thin-Walled Closed-
Section Beams,” AIAA Journal, 1995, to appear.

12



z'Ep



